87 research outputs found

    High surface quality micro machining of monocrystalline diamond by picosecond pulsed laser

    Get PDF
    In micro machining of monocrystalline diamond by pulsed laser, unique processing characteristics appeared only under a few ten picosecond pulse duration and a certain overlap rate of laser shot. Cracks mostly propagate in parallel direction to top surface of workpiece, although the laser beam axis is perpendicular to the surface. This processed area can keep diamond structure, and its surface roughness is smaller than R-a = 0.2 mu M. New laser micro machining method to keep diamond structure and small surface roughness is proposed. This method can contribute to reduce the polishing process in micro machining of diamond. (C) 2019 Published by Elsevier Ltd on behalf of CIRP

    Cerebrospinal fluid leakage after radioisotope cisternography is not influenced by needle size at lumbar puncture in patients with intracranial hypotension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radioisotope (RI) cisternography is considered to be the most important examination for the final diagnosis of intracranial hypotension, typically indicating cerebrospinal fluid (CSF) leakage as RI parathecal activity. Early bladder filling (EBF) of RI is another important finding. However, whether EBF without parathecal activity represents real CSF leakage due to intracranial hypotension or only an epiphenomenon of lumbar puncture causing CSF leak through a needle hole has been questioned.</p> <p>Methods</p> <p>To address this issue, we performed quantitative analysis of RI cisternography on 171 patients with suspected intracranial hypotension using different needle sizes (22 G, 23 G and 25 G) and compared RI residual activity in the CSF at different time points after injection. We also analyzed occurrence of early bladder filling and post-lumbar puncture headache.</p> <p>Results</p> <p>No significant difference in RI residual activity was identified between the 22 G, 23 G and 25 G groups. The incidence of parathecal activity and early bladder filling was not significantly different between groups. The 22 G and 23 G groups had a higher but non-significant incidence of post lumbar headache.</p> <p>Conclusion</p> <p>The results suggest that needle size, at least for 22–25 G, does not affect the results of RI cisternographic diagnostic tests for CSF leakage and bladder filling in intracranial hypotension.</p

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells

    Get PDF
    One of the major factors that limits the treatment effectiveness for gliomas is the presence of the blood–brain barrier (BBB) which protects infiltrating glioma cells from the effects of anti-cancer agents. Circulating monocytes/macrophages (Ma) have a natural ability to traverse the intact and compromised BBB and loaded with anti cancer agents could be used as vectors to target tumors and surrounding tumor infiltrated tissue. Nanoshells (NS) are composed of a dielectric core (silica) coated with an ultrathin gold layer which converts absorbed near-infrared light (NIR) to heat with an extremely high efficacy and stability. We have investigated the effects of exposure to laser NIR on multicell human glioma spheroids infiltrated with empty (containing no nanoshells) or nanoshell loaded macrophages. Our results demonstrated that; (1) macrophages could efficiently take up bare or coated (PEGylated) gold NS: (2) NS loaded macrophages infiltrated into glioma spheroids to the same or, in some cases, to a greater degree than empty Ma; (3) NIR laser irradiation of spheroids incorporating NS loaded macrophages resulted in complete growth inhibition in an irradiance dependent manner, and (4) spheroids infiltrated with empty macrophages had growth curves identical to untreated control cultures. The results of this study provide proof of concept for the use of macrophages as a delivery vector of NS into gliomas for photothermal ablation and open the possibility of developing such regimens for patient treatment

    Bioavailability of iodine in the UK-Peak District environment and its human bioaccessibility: an assessment of the causes of historical goitre in this area

    Get PDF
    Iodine is an essential micronutrient for human health. Its deficiency causes a number of functional and developmental abnormalities such as goitre. The limestone region of Derbyshire, UK was goitre-endemic until it declined from the 1930s and the reason for this has escaped a conclusive explanation. The present study investigates the cause(s) of goitre in the UK-Peak District area through an assessment of iodine in terms of its environmental mobility, bioavailability, uptake into the food chain and human bioaccessibility. The goitre-endemic limestone area is compared with the background millstone grit area of the UK-Peak District. The findings of this study show that ‘total’ environmental iodine is not linked to goitre in the limestone area, but the governing factors include iodine mobility, bioavailability and bioaccessibility. Compared with the millstone grit area, higher soil pH and calcium content of the limestone area restrict iodine mobility in this area, also soil organic carbon in the limestone area is influential in binding the iodine to the soil. Higher calcium content in the limestone area is an important factor in terms of strongly fixing the iodine to the soil. Higher iodine bioaccessibility in the millstone grit than the limestone area suggests that its oral bioaccessibility is restricted in the limestone area. Iodine taken up by plant roots is transported freely into the aerial plant parts in the millstone grit area unlike the limestone area, thus providing higher iodine into the human food chain in the millstone grit area through grazing animals unlike the goitre-prevalent limestone area

    Dry deposition of gaseous radioiodine and particulate radiocaesium onto leafy vegetables.

    No full text
    Radionuclides released to the atmosphere during dry weather (e.g. after a nuclear accident) may contaminate vegetable foods and cause exposure to humans via the food chain. To obtain experimental data for an appropriate assessment of this exposure path, dry deposition of radionuclides to leafy vegetables was studied under homogeneous and controlled greenhouse conditions. Gaseous (131)I-tracer in predominant elemental form and particulate (134)Cs-tracer at about 1 mum diameter were used to identify susceptible vegetable species with regard to contamination by these radionuclides. The persistence was examined by washing the harvested product with water. The vegetables tested were spinach (Spinacia oleracea), butterhead lettuce (Lactuca sativa var. capitata), endive (Cichorium endivia), leaf lettuce (Lactuca sativa var. crispa), curly kale (Brassica oleracea convar. acephala) and white cabbage (Brassica oleracea convar. capitata). The variation of radionuclides deposited onto each vegetable was evaluated statistically using the non-parametric Kruskal-Wallis Test and the U-test of Mann-Whitney. Significant differences in deposited (131)I and (134)Cs activity concentration were found among the vegetable species. For (131)I, the deposition velocity to spinach normalized to the biomass of the vegetation was 0.5-0.9 cm(3) g(-1) s(-1) which was the highest among all species. The particulate (134)Cs deposition velocity of 0.09 cm(3) g(-1) s(-1) was the highest for curly kale, which has rough and structured leaves. The lowest deposition velocity was onto white cabbage: 0.02 cm(3) g(-1) s(-1) (iodine) and 0.003 cm(3) g(-1) s(-1) (caesium). For all species, the gaseous iodine deposition was significantly higher compared to the particulate caesium deposition. The deposition depends on the sensitive parameters leaf area, stomatal aperture, and plant morphology. Decontamination by washing with water was very limited for iodine but up to a factor of two for caesium

    Airborne plutonium and non-natural uranium from the Fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions.

    No full text
    Plutonium (Pu) and non-natural uranium (U) originating from the Fukushima Daiichi Nuclear Power Plant (FDNPP) were identified in the atmosphere at 120 km distance from the FDNPP analyzing the ratio of number of atoms, following written as n(isotope)/n(isotope), of Pu and U. The n((240)Pu)/n((239)Pu), n((241)Pu)/n((239)Pu), n((234)U)/n((238)U), n((235)U)/n((238)U) and n((236)U)/n((238)U) in aerosol samples collected before and after the FDNPP incident were analyzed by accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS). The activity concentrations of (137)Cs and (134)Cs in the same samples were also analyzed by gamma spectrometry before the destructive analysis. Comparing the time series of analytical data on Pu and U obtained in this study with previously reported data on Pu, U, and radioactive Cs, we concluded that Pu and non-natural U from the FDNPP were transported in the atmosphere directly over a 120 km distance by aerosol and wind within a few days after the reactor hydrogen explosions. Effective dose of Pu were calculated using the data of Pu: (130 &plusmn; 21) nBq/m(3), obtained in this study. We found that the airborne Pu contributes only negligibly to the total dose at the time of the incident. However the analytical results show that the amount of Pu and non-natural U certainly increased in the environment after the incident

    Dry deposition of particulate Cs-134 to several leafy vegetable species and comparison to deposition of gaseous radioiodine.

    No full text
    The dry deposition to several leafy vegetables (endive, head lettuce, red oak leaf lettuce, spinach) was studied. Particles with attached 134Cs were used for testing the particulate deposition, gaseous elemental 131I was the tracer for gas deposition. The particle deposition was the highest for rough and structured leafs as red oak leaf lettuce has, but as well for spinach with many open stomata. The stomatal uptake seamed to be the most important process for gas deposition, the deposition to spinach was for Radioiodine the highest as compared to all other species. The lowest deposition was always found to the closed heads of head lettuce. The difference in deposition to the various species was up to a factor 9
    • 

    corecore